Responses of cardiac protein kinase C isoforms to distinct pathological stimuli are differentially regulated.

نویسندگان

  • Y Takeishi
  • T Jalili
  • N A Ball
  • R A Walsh
چکیده

Currently at least 11 protein kinase C (PKC) isoforms have been identified and may play different roles in cell signaling pathways leading to changes in cardiac contractility, the hypertrophic response, and tolerance to myocardial ischemia. The purpose of the present study was to test the hypothesis that responses of individual PKC isoforms to distinct pathological stimuli were differentially regulated in the adult guinea pig heart. Isolated hearts were perfused by the Langendorff method and were exposed to ischemia, hypoxia, H(2)O(2), or angiotensin II. Hypoxia and ischemia induced translocation of PKC isoforms alpha, beta(2), gamma, and zeta, and H(2)O(2) translocated PKC isoforms alpha, beta(2), and zeta. Angiotensin II produced translocation of alpha, beta(2), epsilon, gamma, and zeta isoforms. Inhibition of phospholipase C with tricyclodecan-9-yl-xanthogenate (D609) blocked hypoxia-induced (alpha, beta(2), and zeta) and angiotensin II-induced (alpha, beta(2), gamma, and zeta) translocation of PKC isoforms. Inhibition of tyrosine kinase with genistein blocked translocation of PKC isoforms by hypoxia (beta(2) and zeta) and by angiotensin II (beta(2)). By contrast, neither D609 nor genistein blocked H(2)O(2)-induced translocation of any PKC isoform. We conclude that hypoxia-induced activation of PKC isoforms is mediated through pathways involving phospholipase C and tyrosine kinase, but oxidative stress may activate PKC isoforms independently of Galphaq-phospholipase C coupling and tyrosine kinase signaling. Because oxidative stress may directly activate PKC, and PKC activation appears to be involved in human heart failure, selective inhibition of the PKC isoforms may provide a novel therapeutic strategy for the prevention and treatment of this pathological process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiomyocyte calcium and calcium/calmodulin-dependent protein kinase II: friends or foes?

Calcium (Ca(2+)) is a critical second messenger in cell signaling. Elevated intracellular Ca(2+) can activate numerous Ca(2+)-regulated enzymes. These enzymes have different subcellular localizations and may respond to distinct modes of Ca(2+) mobilization. In cardiac muscle, Ca(2+) plays a central role in regulating contractility, gene expression, hypertrophy, and apoptosis. Many cellular resp...

متن کامل

Cardiac protein kinase C expression in two models of cardiac hypertrophy associated with an activated cardiac renin-angiotensin system: effects of experimental hyperthyroidism and genetic hypertension (the mRen-2 rat).

There is evidence for a role of protein kinase C (PKC) in the development of cardiac hypertrophy. We examined the expression of individual PKC isoforms in the adult rat heart in two distinct, well-characterised in vivo models of cardiac hypertrophy associated with an activated cardiac renin-angiotensin system, namely experimental hyperthyroidism and the TGR(mRen2)27 rat. The cardiac expression ...

متن کامل

Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways

Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...

متن کامل

The role of p38 MAP kinase in cancer cell apoptosis

Many extracellular stimuli are converted into specific cellular responses through the activation of mitogen-activated protein kinase (MAPK) signalling pathways. MAPKs are serine/threonine protein kinases that can phoshorylate both cytoplasmic and nuclear targets.1,2 Four distinct subgroups within the MAP kinase superfamily have been described: extracellular signal-regulated kinases (ERKs), c-ju...

متن کامل

Cutting edge: different Toll-like receptor agonists instruct dendritic cells to induce distinct Th responses via differential modulation of extracellular signal-regulated kinase-mitogen-activated protein kinase and c-Fos.

Dendritic cells (DCs) are pivotal in determining the class of an adaptive immune response. However, the molecular mechanisms within DCs that determine this decision-making process are unknown. Here, we demonstrate that distinct Toll-like receptor (TLR) ligands instruct human DCs to induce distinct Th cell responses by differentially modulating mitogen-activated protein kinase signaling. Thus, E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 85 3  شماره 

صفحات  -

تاریخ انتشار 1999